

Artic®

Strong. Beautiful. Economical.

Giving a hand to oral health.

KULZER
MITSUI CHEMICALS GROUP

Artic

Strong. Beautiful. Economical.

Anteriors

Artic® 6 is a multilayered, life-like, esthetically pleasing anterior tooth. This anatomically shaped tooth permits perfect adaptation to existing dentition and to complete dentures. It is available in 16 shades A1-D4 and 33 anterior moulds.

The characteristic multilayered structure of Artic 6 allows exact matching of reflection curves in both natural and artificial teeth. With its high degree of translucency in the incisal and approximal regions, it offers dentists and their patients anterior teeth with an appearance guaranteed to match natural dentition under all ambient or artificial lighting conditions.

Posterior

The **Artic 8** posterior tooth is available in 22 posterior moulds that provide a superior physiological function, accurate intercuspal relationship, perfect occlusion and an even distribution of the masticatory load. The unique hollow neck improves bonding to the denture base material. Artic 8 guarantees fast and easy laboratory set up and first time fit in the patient's mouth.

The posteriors are available in four different angulations

Artic 8-0°

- Multi-layered posterior tooth with a unique plane flat occlusal surface
- Gentle on soft tissue due to elimination of all horizontal components. Lateral shear is reduced to a minimum on the denture-supporting tissue making the fit comfortable for the patient

Artic 8-10°

- Multi-layered posterior tooth for all indications
- Unique occlusal surface guarantees unrestricted movements and easy occlusion
- Multiple contact points

Artic 8-20°

- Multi-layered posterior tooth with functional contouring of occlusal surface
- Exact centric occlusion
- Multiple contact points
- Optimum intercuspidation

Artic 8-30°

- Multi-layered posterior tooth with functional contouring of occlusal surface
- Exact centric occlusion
- Natural occlusal intercuspidation

Mould Comparison

Upper anteriors		Lower anteriors		Posterior		
Classic™	Artic®	Classic™	Artic®	Angulation	Classic™	Artic®
134	O 20	2C	L 10	0°	29M	0°-30 U/L
136	S 30	3M	L 05	0°	31M	0°-32 U/L
137	S 35	2D	L 20	10°	F30	10°-30 U/L
1H	T 40	2N	L 15	10°	F32	10°-32 U/L
2D	O 10	3D	L 40	20°	29M	20°-30 U/L
3D	TO 05	3N	L 25	20°	31M	20°-32 U/L
2N	T 15	2E	L 30	20°	33M	20°-34 U/L
A24	TO 10	46	L 45	20°	34M	20°-36 U/L
A25	T 20	4H	L 55	30°	30M	30°-30 U/L
A26	T 35	3P	L 50	30°	32M	30°-32 U/L
3M	S 05			30°	34M	30°-34 U/L
3N	TO 20					
3P	O 30					
263	R 20					
264	T 30					
266	R 30					
267	R 40					

Artic

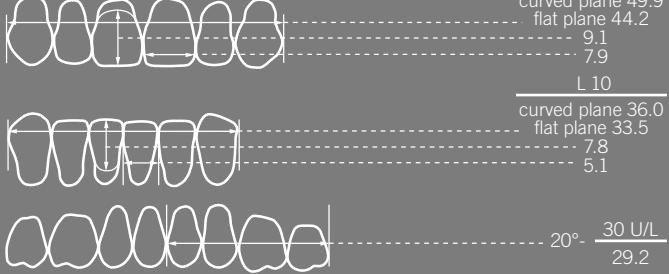
Vision arising out of tradition.

A new era in the manufacturing of artificial teeth commenced in 1965 with the introduction of the INCOMP (injection/compression) process. This technology was developed by a company that had been founded three years previously by Dr. Kurt Schilling, later to be known as "Lindauer Zähne".

The aim of this new technology was to substantially improve the quality of artificial teeth. Continuous optimization of the individual process stages and of material selection resulted in a constant increase in the range of artificial teeth available and consequently in their worldwide market share.

Between 1978 and 1995, the company was part of a major German chemicals company prior to its acquisition by Heraeus Kulzer in September 1995. Today the company is known as Kulzer, LLC, a subsidiary of Mitsui Chemicals Group.

Mould numbers and possible combinations


	Upper Anteriors	Lower Anteriors	U/L Posteriors	0°	U/L Posteriors	10°	U/L Posteriors	20°	U/L Posteriors	30°
0 Ovoid	O 10	L 10	30	30	30	30	30	30	30	30
	O 20	L 30	30, 32	30, 32	32	32	32	32	32	32
	O 30	L 40	32	32	32	32	32	32	32, 34	32, 34
Rectangular	R 20	L 20	32	32	32, 34	32, 34	32, 34	32, 34	32, 34	32, 34
	R 30	L 25	32	32	36	36	36	36	34	34
	R 40	L 55	32	32	36	36	36	34	34	34
Square	S 05	L 05	30	30	30	30	30	30	30	30
	S 10	L 10	30	30	30	30	30	30	30	30
	S 20	L 20	30, 32	30, 32	32	32	32	32	32	32
	S 30	L 40	32	32	32, 34	32, 34	32, 34	32, 34	32, 34	32, 34
	S 35	L 55	32	32	36	36	36	34	34	34
	S 40	L 55	32	32	36	36	36	34	34	34
Triangular	T 10	L 10	30	30	30	30	30	30	30	30
	T 15	L 15	30, 32	30, 32	32	32	32	30, 32	30, 32	30, 32
	T 20	L 30	30, 32	30, 32	32	32	32	32	32	32
	T 30	L 20	32	32	32	32	32	32, 34	32, 34	32, 34
	T 35	L 40	32	32	32	32	32	32, 34	32, 34	32, 34
	T 40	L 50	32	32	34	34	34	34	34	34
Triangular ovoid	TO 05	L 05	30	30	30	30	30	30	30	30
	TO 10	L 15	30	30	30	30	30	30, 32	30, 32	30, 32
	TO 20	L 20	30, 32	30, 32	32	32	32	32, 34	32, 34	32, 34
	TO 30	L 40	32	32	32	32	32	34	34	34
	TO 40	L 45	32	32	34	34	34	34	34	34

Kulzer teeth meet and exceed all the requirements of DIN EN ISO 22112:2006.

Anteriors

O 10			44.9 40.9 9.0 7.5	S 35			55.4 50.6 10.8 9.2
O 20			50.0 46.1 9.7 8.4	S 40			57.8 53.2 12.6 9.9
O 30			53.5 47.0 11.0 8.6	T 10			48.0 44.1 9.0 8.2
R 20			47.9 43.0 10.0 8.0	T 15			45.9 42.6 9.6 7.9
R 30			55.1 47.8 11.8 8.9	T 20			48.2 45.6 9.8 8.8
R 40			57.8 51.0 13.4 9.7	T 30			51.0 45.5 10.6 8.2
S 05			45.1 40.3 8.9 7.4	T 35			51.0 47.4 10.0 8.8
S 10			49.9 44.2 9.1 7.9	T 40			55.2 49.1 12.1 8.7
S 20			49.6 44.0 9.9 7.9	TO 05			46.0 42.1 9.0 7.8
S 30			54.8 49.8 10.5 8.9	TO 10			48.0 43.3 9.3 8.3

Anteriors

TO 20		48.5 43.8 9.6 7.9	L 25		42.0 37.0 9.2 5.7
TO 30		50.1 45.9 10.4 8.6	L 30		41.3 35.9 9.0 5.5
TO 40		51.8 47.8 11.0 8.9	L 40		40.8 36.0 9.0 5.5
L 05		34.6 31.5 9.0 5.0	L 45		44.0 38.9 9.6 5.9
L 10		36.0 33.5 7.8 5.1	L 50		44.9 39.2 11.1 5.9
L 15		37.2 33.9 9.5 5.2	L 55		48.6 40.1 10.6 6.1
L 20		39.9 35.5 8.9 5.3			
<p>S 10 curved plane 49.9 flat plane 44.2 9.1 7.9</p> <p>L 10 curved plane 36.0 flat plane 33.5 7.8 5.1</p>					
<p>20° $\frac{30 \text{ U/L}}{29.2}$</p>					
<p>20° $\frac{30 \text{ U/L}}{31.0}$</p>					
<p>20° $\frac{30 \text{ U/L}}{7.6}$</p> <p>20° $\frac{30 \text{ U/L}}{6.9}$</p>					

Posteriors

30 U	0°			28.9 8.4
30 L				30.7 9.1
32 U	0°			33.1 8.8
32 L				34.8 9.2
30 U	10°			29.4 8.8
30 L				31.0 7.9
32 U	10°			32.1 9.5
32 L				35.3 8.7
30 U	20°			29.2 7.6
30 L				31.0 6.9
32 U	20°			31.4 9.0
32 L				33.5 7.5

Posteriors

34 U	20°			32.5 9.1
34 L				35.3 8.2
36 U	30°			34.0 10.0
36 L				37.6 8.9
30 U	30°			30.2 8.5
30 L				32.9 8.5
32 U	30°			31.6 8.5
32 L				35.2 9.1
34 U	30°			33.7 9.0
34 L				39.0 9.9

Also from Kulzer:

Pala® Polish

Achieve a high shine and remove scratches in one step.

The cream for polishing dental appliances

- Simultaneously removes scratches and leaves a high shine on dental appliances.
- No need for pumice.
- Reduce polishing times.
- Available in an 80 gram jar.

Distributed by:
Kulzer, LLC
4315 S. Lafayette Blvd.
South Bend, IN 46614
(800) 431-1785

Manufactured by:
Kulzer GmbH
Leipziger Straße 2
63450 Hanau, Germany
info.dent@kulzer-dental.com